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Abstract—A pproximate expressions for the higher eigenvalues for heat transfer to a fluid in turbuient
or laminar Newtonian or ncn-Newtcnian axial moticn through an annulus are obtained by the WKB
method. A ccmparison of these eigenvalues for a specific heat-transfer problem for laminar Newtonian
flow with results from the literature is made. The higher eigenvalues agree quite well, but the lowest
eigenvalue is as much as 40 per cent too high.
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NOMENCLATURE
constant of integration;
constant of integration;
constants of integration;
expansion coefficient;
heat capacity at constant pressure,
per unit of mass;
dimensionless velocity profile in
terms of p;
dimensionless thermal conductiv-
ity in terms of p;
dimensionless velocity profile in
terms of 8;
dimensionless velocity and first
derivative with respect to 8 evalu-
atedat 8§ = 0;
dimensionless thermal conductiv-
ity in terms of 8;
dimensionless thermal conductiv-
ity and first derivative with respect
to B evaluated at B = 0;
Bessel functions;
dimensionless velocity profile in
terms of y;
overall thermal conductivity; ther-
mal conductivity of stagnant fluid;
dimensionless velocity and first
derivative evaluated at y = 0;
dimensionless axial length used by
Hatton and Quarmby;
dimensionless thermal conductiv-
ity in terms of y;
index;
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uniform heat flux into fluid at
outer annulus wall;

radial coordinate, outer radius of
annulus;

time-smooth temperature;

uniform fluid temperature at z=0;
uniform temperature at the inner
wall of the annulus;

bulk fluid temperature;

velocity profile, maximum velocity;
axial direction;

dimensionless distance from outer
wall of annulus measured inwards;
eigenfunction;;

dimensionless distance from inner
wall of annulus measured out-
wards;

dimensionless axial distance;
dimensionless temperature ; dimen-
sionless temperature at very large
distances from z = 0;

ratio of radius of inner wall to that
of outer wall;

eigenvalue;

eigenvalues given by Hatton and
Quarmby;

eigenvalues evaluated from the
WKB expression but recalculated
for direct comparison with Ang;
dummy variable of integration;
dimensionless radial distance, den-
sity;



¢, eigenfunction;
¥, a part of the dimensionless tem-
perature;
Q, eigenfunction.
INTRODUCTION

MANY problems of heat transfer to flowing
fluids can be reduced to differential equations,
the solution of which requires the determination
of a set of quantities called eigenvalues. Approxi-
mate expressions for the higher valued eigen-
values can be obtained by the WKB method
which was first applied to laminar flow heat
transfer problems by Sellars, Tribus, and Klein
[6] in 1956. Their solution for laminar flow in a
round tube has been extended by Sternling and
Sleicher [7] to heat transfer to a fluid in turbulent
motion through a round tube. In 1958, Dzung [3]
in his consideration of the heat transfer to a fluid
in motion through a round tube with a sinusoidal
heat flux distribution at the wall, obtained
approximate expressions for the higher valued
eigenvalues. He also considered, as a limiting
case of the truncated half-wave, the uniform heat
flux problem. Lundberg, McCuen, and Reynolds
[5] have considered the general problem of heat
transfer to a fluid in laminar Newtonian motion
through an annulus. In this note, an expression
for the higher eigenvalues will be obtained for
one case of heat transfer to a fluid in turbulent
or laminar Newtonian or non-Newtonian motion
through an annulus. Eigenvalues for the laminar
flow of a Newtonian fluid are calculated from
the WKB expression and compared with the
results of Hatton and Quarmby [4].

In particular, for z < 0, a fluid flowing in the
(+2) direction is considered to have a uniform
temperature Ty and a fully developed velocity
profile V,(r). At z = 0, the fluid enters a heat
transfer region where a uniform temperature,
Tiw, is imposed on the inner wall (r = «R) and
a uniform heat flux, go, into the fluid at the outer.
If it is assumed that steady state exists, that the
time-smoothed velocity profile is fully developed,
that the fluid is incompressible, and that viscous
dissipation and longitudinal heat conduction
are relatively unimportant, the equation of
energy is reduced to (Bird ez al. [21)),
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The thermal conductivity, k, is assumed to be
a constant for laminar motion and, for turbulent
motion, to be strongly dependent on the degree
of turbulence. The quantities with bars over
them, ¥, and T, are interpreted as time smoothed
for turbulent motion.

Equation (1), when the substitutions:

g(p) = k/k® (22)
p=r/R (2b)
f(p) = Vel Vzmax (2¢)
'p G _
{=z / [(Pk—(g)?)m Va max] (2d)
and
6= (T - Tiw)/(T 0 — Tiw) (2¢)
are made, becomes
00 1 ¢ o0
f(P)‘af=;)a—;(gP3;,)- ®

k® is the value of the thermal conductivity for
laminar motion.

The dimensionless boundary conditions be-
come

p=x, ©=0 (4a)
00 Rqo

Pl ST —Tw

(=0, 6=1. (4c)

The problem is now converted to a homo-
geneous form by the substitution

8(p, ) = Bulp) + ¥(p, O )

and the requirement that G«(p) satisfy the non-
homogeneous part of the boundary conditions.
Ou(p) is found to be:

I

B Rgo d¢
O=(p) = 1y (To — Tiw) * .[ £g(6)’

I’

©

The differential equation for ¥(p, {) becomes

10

o 0
f(P)‘{i=;%(gP 5!;) ™
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and the homogeneous boundary conditions are:

p=x, ¥=0 (8a)
o¥
p=1, e 8b)
{=0, ¥(p,0)=1—Bx(p). (8c)
The solution to this problem is
Hp. D=3 Cemp[= N U4l )
where
§ £(0) ¥(p. 0) $u(p) dp
C="— - (10)
I pf(p) $i(p) dp
and the function ¢¢(p) is the solution of

‘%; (¢ ,,%*) F NP HH=0 (1)

and

$1(x) = ¢;(1) = 0. (12)
EVALUATION OF THE EIGENVALUE

Approximate expressions for the higher values
of the discrete eigenvalues A; are herein obtained;
the procedure of analysis is quite similar to that
used by Sellars et al. [6].

In terms of the dimensionless distance from
the outer wall of the annulus, 8 =1 — p, the
WKB expression for the eigenfunction ¢(p) =

Q@) is
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less velocity A(B) is zero. Hence, the constants
A and B cannot be determined directly. Instead,
solutions of approximate expressions of equation
(11) will be obtained for regions close enough to
either wall so that turbulence and the effects of
the circular geometry may be neglected and so
that the velocity profile may be assumed linear.
Then, as indicated below, the constants 4 and B
and the eigenvalue A will be obtained by match-
ing the several approximate solutions and satis-
fying the boundary conditions.

When 8 ~ 0, equation (11) is approximated by

¢8R ew0).8.2=0 @6

dpe
where the approximations,
f(=hB =h0)+HO).B+... = K(0).B
p=1—8=~1
g(p) =j(B) =j0)+j©) .8+ ... 2 j0) =1
are made. The solution of equation (16) is

o) =g [cunn (5 vivOD #2) +
CaJs (5 VKO ﬁm)]- an

To satisfy the condition £(0) =0, Ci is set
equal to zero. When C; is arbitrarily set equal
to unity,

2@ = i L (3 VIFOL 7). 19

Aexp (+ (vV—1) A j\/[h@)/j(m d}+ B exp {— (v/— mf VIRE©] €}

Ap) =

(13)

I — B @) BT .
The additional functional changes Equations (13) and (18) are now matched. For
g(p) =jB); flp)=h{E) (l4a,b) ' small values of B,
have been made.

The boundary conditions to be satisfied are,
Q1 — ) = 2(0) = 0. 15

Equation (13) has singularities at 8 = 0 and
B = 1 — « since, at these points, the dimension-

TN/ [%] ¢ = fV [K(0)) &2 d¢ =

0 0

SVIFOIER (9
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and for very large values of A (large enough so
that A83/2 is quite large),

T (5 VIFOI8) = (5 @)-

cos {(22/3) VIn(0)] B2 — (/12)}
B34 o
These approximations cause equations (13) and

(18) to exactly match, and allow 4 and B to be
determined. Equation (13) then becomes

= (i) -

cos {Af VIO dE — (n/12))}
BTN L

Very close to the inner wall of the annulus,
equation (11) may be converted to the form,

&r A2 kA0 '—o0
d‘yé+ ©).y.T:

. (20)

. QD

(22)

when the substitutions
y=p—«
Hp) = k() = k©) + k') .y + ... 2 kK'(0) . v
g(p) = mly) = 1
#(p) = T'(y)

are made. The general solution of equation (22)
is

Py G (Vo2 +

2A
Cadps (3—» VIKO)] yw)]. @3)

The constants C; and C: are determined by
matching equation (23), approximated for large
values of Ay%/2 with equation (21); equation (23)
becomes, after C; and Cs are determined,
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To satisfy the condition I'(0) = 0, it is necessary
to set

1—x
. h(€) v}
sin [A —5~1dé— 5| =0
[ J Ji)
It follows that the eigenvalue can take on the
values
(n + b

1 s

[ VIn&)/j(%)] d¢

¢

Ay = n=0,1,2,... (25

CONCLUSIONS

In the inlet section of annular heat transfer
equipment, it is necessary to keep a relatively
large number of terms in equation (9). In the
author’s opinion, one of the most difficult items
to evaluate is the higher valued (n = 3, 4, etc.)
eigenvalue. Equation (25) should provide a direct
and quite accurate expression for the evaluation
of these terms.

Eigenvalues have been calculated, with the aid
of an IBM 1620 computer, from equation (25)
for the laminar flow of a Newtonian fluid in an
annulus with values of

1 1 1
6> 3 2
These results are modified and tabulated in Table
1 and compared with those obtained by Hatton
and Quarmby [4]. The eigenvalues cannot be
compared directly since a different choice of the
dimensionless axial distance was made in the
two analyses. The comparison may be made after
setting

2 20
3721

K o=

(Aol L - X1 (26)

where L and A, are the dimensionless axial
distance and eigenvalue used by Hatton and
Quarmby. The dimensionless laminar Newtonian
velocity profile is, [2],

— K
~

O

1-«

BN

0

s o

j’%) dg g] Jo1s (%3 VIKO)] ya/)}

VIKO)] 2
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s 1—p2+4[(1 — «In(1/x)]1n p @)
fp) = Veomax 1 —[(1 —«2)2In(1/<)] {1 —In[(1 — «%)/21n (1/0)]}’
and h(£), obtained by replacing p by 1 — £, is

26 — &+ [(1 — «)/In(l/)]In(l — §
WO = i =R T = =2 )} (28)

After the necessary manipulations with equations (26), (27), and (28) have been carried out, the
WKB eigenvalues recalculated for direct comparison with those of Hatton and Quarmby are

_ [1 + &2 — (1 — «¥)/In (I/K)]rfz ‘ 7l —x)(n+ 1) . 29
¢ 2 [V@2E— &+ — @n (/) In (1 — O} de

The dimensionless thermal conductivity, g(¢) = 1.

A

Table 1. Comparison of eigenvalues calculated from WXKB approach
(X ng) and by Hatton and Quarmby {Axg, reference [4])

Ang’ — Amg 100

n NHg AHg Aug — Aug — 5
HQ

e =1/6
0 1-59395 1-12495 0-46900 417
1 478186 4-58269 0-19917 4-35
2 796977 7-83073 0-13904 1-78
3 11-15768 11-04763 0-11005 1-00
4 14-34558 14-25304 0-09254 0-65
5 17-53349 17-45278 0-08071 0-46
6 20-72140 2064929 0-07211 0-35
7 23-90930 23-84375 0-06555 0-27
8 27-09721 27-03685 0-06036 022
9 30-28512 30-22899 0-05613 0-19

k= 1/3
0 161644 128216 0-33428 261
1 4-84934 4-70436 0-14498 308
2 808222 7-98144 0-10078 126
3 1131512 11-23569 007943 071
4 1454800 14-48154 006646 0-46
5 1778090 1772327 005763 033
6 2101378 2096265 0-05113 024
7 24-24668 24-20056 0-04612 0-19
8 27-47956 27-43748 0-04208 0-15
9 3071246 30-67373 0-03873 013

x=1/2
0 162608 1:38300 024308 176
1 487823 476771 0-11052 232
2 813039 805276 0-07763 096
3 1138255 1132103 0-06152 0-54
4 1463470 14-58304 0-05166 0-35
5 17-88686 17-84195 0-04491 025
6 21-13901 21-09910 0-03991 19
7 24-39117 24-35514 0-03603 015
8 27-64333 27-61044 003289 012
9 30-89548 30-86523 0-03025 010
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Table 1—continued

Nug — Amg

n Nue AmQ Nig— AH@ 100
AH Q
k=2/3
0 163055 1-45640 0-17415 12:0
1 4-89166 4-80780 0-08386 1-74
2 8-15276 8-09310 0-05966 0-74
3 11-41387 11-36629 0-04758 042
4 14-67498 14-63486 0-04012 0-27
5 17-93608 17-90112 0-03496 0-20
6 21-19719 21-16606 0-03113 0-15
7 24-45830 24-43017 0-02813 0-12
8 2771940 27-69372 0-02568 0-09
9 30-98051 30-95689 0-02362 0-08
x = 20/21
0 163118 1-54688 0-08430 5-45
1 4-89354 4-85174 0-04180 0-86
2 8-15590 8-13040 0-02550 0-31
3 11-41826 11-40302 0-01524 0-13
4 14-68062 14-67321 0-00741 0-05
5 17-94298 17-94215 0-00083 0-005
6 21-20534 21-21035 —0-00501 —0-02
7 24-46770 24-47810 —0-01040 —0-04
8 2773006 27-74554 —0-01548 —0-06
9 30-99242 31-01279 —0-02037 —0-07
It is evident from Table 1 that the WKB REFERENCES

approach is an accurate means for computing
eigenvalues beyond the third or fourth. The first
two or three are quite inaccurate; the inaccuracy
of the lower eigenvalues in problems of heat
transfer to fluids in laminar motion in round
tubes has been pointed out by Beek and Eggink
[1]. This makes the evaluation of limiting Nusselt
numbers that depend primarily on the lower
eigenvalues quite inaccurate.

It is also noted that, for a given value of the
index n, the agreement between the approximate
and exact eigenvalues becomes better as «
increases. This seems reasonable because curva-
ture has been neglected in the approximate
equation (22), which should be more ‘accurate
for a higher value of «.
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Résumé—Des expressions approchées pour les valeurs propres élevées pour le transport de chaleur

4 un fluide en mouvement axial Newtonien ou non-Newtonien, laminaire ou turbulent, 4 travers un

tuyau annulaire sont obtenues par la méthode WKB. Une comparaison de ces valeurs propres pour

un probléme spécifique de transport de chaleur avec un écoulement Newtonien laminaire est faite

avec les résultats de la bibliographie. Les valeurs propres élevées sont en bon accord, mais la valeur
propre la plus basse est 409, plus élevée.

Zusammenfassung—Mit der WKB-Methode werden Niherungsausdriicke fiir die héheren Eigenwerte

beim Wirmeiibergang an eine Fliissigkeit von turbulenter oder laminarer Newtonscher oder nicht

Newtonscher axialer Bewegung durche einen Ringraum erzielt. Fiir ein Einzelproblem des Wir-

meiiberganges bei laminarer Newtonscher Stréomung werden diese Eigenwerte mit Ergebnissen aus der

literatur verglichen. Die hSheren Eigenwerte stimmen gut iiberein, aber der unterste Eigenwert liegt
um 409 zu hoch.

Ansoramaa—Meronom BHE nomytens npuliwaeHHHe BHPAaskeHUA IJIA BHCUHX COGTBEH-
HHX BHavYeHHU NJIA HepeHoCa B KPYTJIOM KOJBIIE K MUAKOCTH, HaXORAmecA B TypOyaeHTHOM
A JAMMHAPHOM HBIOTOHOBCKOM MJIM HEHBIOTOHOBCKOM OCECMMMETDHYHOM JBIKEHMH.
IlpoBeneno cpaBHeHHMe 9THX COGCTBEHHHWX BHAueHMIt JJIA 4acTHOM 8ajgaum TemiooOMeHa HPH
JaMUHAPHOM HBIOTOHOBCKOM TeYeHMH C M3BECTHHIMM JMTePATYPHHMM JAHHKMHU. 14 BHCIOMX
co0CTBeHHHX BHaueHuit coraacue BIOJHe Xopollee, HO HUBIIME COGCTBEHHEIE 3HAYEHUA NMPH-
6ausurensro Ha 40 MPONEHTOB MPEBOCXOAT SHAYEHHA, NPUBENEHHHE B JUTEpaType.
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