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APPROXIMATE EIGENVALUES FOR HEAT TRANSFER TO 

LAMINAR OR TURBULENT FLOW IN AN ANNULUS 
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Abstract-Approximate expressions for the higher eigenvalues for heat transfer to a fluid in turbulent 
or laminar Newtonian or nc n-Newtcnian axial moticn through an amndus are obtained by the WKB 
method. A ccmparison of these eigenvalues for a specific heat-transfer problem for Iaminar Newtonian 
flow with results from the literature is made. The higher eigenvalues agree quite well, but the lowest 

eigenvalue is as much as 40 per cent too high. 

A, 
B, 
Cl, cz, 

G, 

G, 

f(P), 

t?(P), 

W% 

h(O), h’(O), 

j(B), 

A% j’(O), 

5~3, J-1/3, 

k(r), 

k, kc’), 

k(O), k’(O), 

L 

m(r), 

NOMENCLATURE 

constant of integration; 
constant of integration; 
constants of integration; 
expansion coefficient ; 
heat capacity at constant pressure, 
per unit of mass ; 
dimensionless velocity profile in 
terms of p ; 
dimensionless thermal conductiv- 
ity in terms of p; 
dimensionless velocity profile in 
terms of /3; 
dimensionless velocity and first 
derivative with respect to /3 evalu- 
atedat@=O; 
dimensionless thermal conductiv- 
ity in terms of p; 
dimensionless thermal conductiv- 
ity and first derivative with respect 
to ,8 evaluated at /I = 0 ; 
Bessel functions; 
dimensionless velocity profile in 
terms of y; 
overall thermal conductivity; ther- 
mal conductivity of stagnant fluid; 
dimensionless velocity and first 
derivative evaluated at y = 0; 
dimensionless axial length used by 
Hatton and Quarmby; 
dimensionless thermal conductiv- 
ity in terms of y; _ 
index ; n, 

uniform heat flux into fluid at 
outer annulus wall; 
radial coordinate, outer radius of 
annulus ; 
time-smooth temperature; 
uniform fluid temperature at z = 0; 
uniform temperature rit the inner 
wall of the annulus; 
bulk fluid temperature ; 

velocity profile, maximum velocity; 
axial direction; 
dimensionless distance from outer 
wall of annulus measured inwards; 
eigenfunction; 
dimensionless distance from inner 
wall of annulus measured out- 
wards ; 
dimensionless axial distance; 
dimensionless temperature; dimen- 
sionless temperature at very large 
distances from z = 0; 
ratio of radius of inner wall to that 
of outer wall ; 
eigenvalue; 
eigenvalues given by Hatton and 
Quarmby ; 
eigenvalues evaluated from the 
WKB expression but recalculated 
for direct comparison with AHQ; 

dummy variable of integration; 
dimensionless radial distance, den- 
sity; 
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eigenfunction; 
a part of the dimensionless tem- 
perature ; 
eigenfunction. 

INTRODUCIION 
MANY problems of heat transfer to flowing 
fluids can be reduced to differential equations, 
the solution of which requires the determination 
of a set of quantities called eigenvalues. Approxi- 
mate expressions for the higher valued eigen- 
values can be obtained by the WKB method 
which was hrst applied to lam&r flow heat 
transfer problems by Sellars, Tribus, and Klein 
[6] in 1956. Their solution for laminar flow in a 
round tube has been extended by Sternling and 
Sleicher [7] to heat transfer to a fluid in turbulent 
motion through a round tube. In 1958, Dzung [3] 
in his consideration of the heat transfer to a fluid 
in motion through a round tube with a sinusoidal 
heat flux distribution at the wall, obtained 
approximate expressions for the higher valued 
eigenvalues. He also considered, as a limiting 
case of the truncated half-wave, the uniform heat 
flux problem. Lundberg, McCuen, and Reynolds 
[5] have considered the general problem of heat 
transfer to a fluid in laminar Newtonian motion 
through an annulus. In this note, an expression 
for the higher eigenvalues will be obtained for 
one case of heat transfer to a fluid in turbulent 
or laminar Newtonian or non-Newtonian motion 
through an annulus. Eigenvalues for. the laminar 
flow of a Newtonian fluid are calculated from 
the WKB expression and compared with the 
results of Hatton and Quarmby [4]. 

In particular, for z < 0, a fluid flowing in the 
(+z) direction is considered to have a uniform 
temperature ?‘a and a fully developed velocity 
profile V&). At z = 0, the fluid enters a heat 
transfer region where a uniform temperature, 
Ti,, is imposed on the inner wall (r = KR) and 
a uniform heat flux, qo, into the fluid at the outer. 
If it is assumed that steady state exists, that the 
time-smoothed velocity profile is fully developed, 
that the fluid is incompressible, and that viscous 
dissipation and longitudinal heat conduction 
are relatively unimportant, the equation of 
energy is reduced to (Bird et al. [21]), 

(1) 

The thermal conductivity, k, is assumed to be 
a constant for laminar motion and, for turbulent 
motion, to be strongly dependent on the degree 
of turbulence. The quantities with bars over 
them, Pz and T, are interpreted as time smoothed 
for turbulent motion. 

Equation (l), when the substitutions: 

g(p) = k/k(i) 

p = r/R 

f(P) = wwllax 

GN 

CW 

(24 

and 

8 = (T - Tifu)/(To - Tfw) cw 
are made, becomes 

k(l) is the value of the thermal conductivity for 
laminar motion. 

The dimensionless boundary conditions be- 
come 

P=K, $=o (44 

p=l, Ez Rm 
ap kc’) (To - 7’~) CW 

c=o, @=l. (4c) 

The problem is now converted to a homo- 
geneous form by the substitution 

% 5) = @=M + Y(P, 0 (5) 

and the requirement that S*(p) satisfy the non- 
homogeneous part of the boundary conditions. 
O,(p) is found to be: 

The differential equation for Y(p, C) becomes 

Q 
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and the homogeneous boundary conditions are: less velocity h(B) is zero. Hence, the constants 

p=K, Y=o 

p=l, a%o 
aP 

f = 0, Y(p, 0) = 1 - &o(p). 

The solution to this problem is 

YP, 0 =if& exp [- ? Cl V%(P) 

where 

@a) 
A and B cannot be determined directly. Instead, 
solutions of approximate expressions of equation 

C _ 1 PAPI ul(p, 0) MP) dp 

t- 

!’ PAP) MP) dp 
I( 

and the function +6(p) is the solution of 

$ 8 P$ 
( 1 

+ h,a Pf(P) b(P) = 0 

and 

‘#t(K) = #i(l) = 0. 

EVALUATION OF THJ3 EIGEWVALm 

(8b) 
(11) will be obtained for regions close enough to 
either wall so that turbulence and the effects of 

(8c) 
the circular geometry may be neglected and so 
that the velocity profile may be assumed linear. 
Then, as indicated below, the constants A and B 
and the eigenvalue )\ will be obtained by match- 

(9) ing the several approximate solutions and satis- 
fying the boundary conditions. 

When fl r 0, equation (11) is approximated by 

$ + A2 h’(0) . p . B = 0 (16) 

where the approximations, 

f(p) = I@) = h(0) + h’(0) . /3 + . . . r h’(0) . /3 

p=l-_8=1 
(11) g(p)=jcB)=j(O)+j'(O).B+...~j(O)=1 

are made. The solution of equation (16) is 
(12) 

SQ?) = /3r’a [ Cr Jlls 

Approximate expressions for the higher values 
of the discrete eigenvalues Xt are herein obtained; C2 J-m (2512/W(O)1 $IB)] . (17) 
the procedure of analysis is quite similar to that 
used by Sellars et al. [6’J. To satisfy the condition Q(0) = 0, Cl is set 

In terms of the dimensionless distance from equal to zero. When C2 is arbitrarily set equal 
the outer wall of the annulus, /3 = 1 - p, the to unity, 
WKB expression for the eigenfunction +(p) = 

QGS) is 
Q@) = ,P2 J-1/3 (!!@'(O)] pm). (18) 

The additional functional changes Equations (13) and (18) are now matched. For 

g(p) = jcs>; f(p) = I@) (14a, b) very smaU vahres Of” 

have been made. 
The boundary conditions to be satisfied are 

Q(l - K) = p(o) = 0. 

(1; “rJK] dt r /G’(O)1 P”dt = 
0 0 

Equation (13) has singularities at p = 0 and 
/? = 1 - K since, at these points, the dimension- (19) 
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and for very large values of X (large enough so 
that AjW2 is quite large), 

To satisfy the condition r(O) = 0, it is necessary 
to set 

J-1/3 (y %4w91 P) z jxh $, @y) . 

~0s {(2h/3) ~/LuO)I Pa’2 - (n/12) > 
8314 ----* 

(20) 

These approximations cause equations (13) and 
(18) to exactly match, and allow A and B to be 
determined. Equation (13) then becomes 

fi(13) = (--+J2. 

cos 1X ? ~‘[W)l.K5)1 dE - (r/12); 
0 

W) * ww’4 
-. (21) 

Very close to the inner wall of the annulus, 
equation (11) may be converted to the form, 

d2r 

It follows that the eigenvalue can take on the 
values 

(n + b)~ A,-= l_x- -----~-; n=70,1,2,... (25) 
S dMfMf)l df 
0 

CONCLUSIONS 

-;r + A2 k’(0) . y , I’ -~ 0 
dru 

when the substitutions 

(22) 

In the inlet section of annular heat transfer 
equipment, it is necessary to keep a relatively 
large number of terms in equation (9). In the 
author’s opinion, one of the most difficult items 
to evaluate is the higher valued (n = 3, 4, etc.) 
eigenvalue. Equation (25) should provide a direct 
and quite accurate expression for the evaluation 
of these terms. 

Y’P-K 

Eigenvalues have been calculated, with the aid 
of an IBM 1620 computer, from equation (25) 
for the laminar flow of a Newtonian fluid in an 
annulus with values of 

f(p) = k(r) == k(0) + k’(0). y + . . g k’(0) . y 

$(P) = VY) 

are made. The general solution of equation (22) 
is 

r = y1’2 [CI J1,3 (!; 2/[k'(O)j yq -+ 

c 

2h 
Ct? J--1,3 -~- \/[k'(O)]y3" 

3 11 
. (23) 

These results are modified and tabulated in Table 
1 and compared with those obtained by Hatton 
and Quarmby [4]. The eigenvalues cannot be 
compared directly since a different choice of the 
dimensionless axial distance was made in the 
two analyses. The comparison may be made after 
setting 

The constants Cl and CZ are determined by 
matching equation (23), approximated for large 
values of Ay3’2 with equation (21); equation (23) 
becomes, after Cl and CZ are determined, 

(X;lo)” L h’ 5 (26) 

where L and h,,o are the dimensionless axial 
distance and eigenvalue used by Hatton and 
Quarmby. The dimensionless laminar Newtonian 
velocity profile is, [2], 
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f(P) = $--& = 1 

1 - p2 -t- [(l - ~)~/ln (l/K)] h’I p 
- [(l - K2)/2 hl (l/K)] (1 - in [(I - K2)/2 h (l/K)]j ’ 

(27) 
* 

and h(f), obt~ned by replacing p by 1 - 5, is 

2r - P + 10 - K2)/h (l/K)] h (t - f) 

‘(” = 1 - [(l - &/2 In (l/K)] (1 - In [(l - x2)/2 In (l/~)]}’ 
(28) 

After the necessary manipulations with equations (26), (27), and (28) have been carried out, the 
WKB eigenvalues recalculated for direct comparison with those of Hatton and Quarmby are 

A;;IQ = 
I 

1 + K2 - [( 1 - K’)/h (l/K)] 

I 

“’ 77 0 - K) (n + 41 
___--. 

2 * l-h- * (2% 
[dj2t--$+[(l - K2)/ln(1/K)11n(l-n>d~ 

The dimensionless thermal conductivity, g(5) = 1. 

E&e 1. Comparison of e~~e~o~ues c~cu~o~ed from WKB approach 
(A’& and by Hatton and Quarmby (kg, rejeretzce [41) 

- 

XHQ 
- hQ 

hHQ' 
hQ * 

100 

l-59395 
4.78186 
7.96977 

11-15768 
14.34558 
17.53349 
20.72140 
23.90930 
27.0972 I 
3028512 

1.61644 
4.84934 
8.08222 

11*31.512 
1454800 
17.78090 
21.01378 
24.24668 
27.47956 
30.71246 

l-62608 
4.87823 
8.13039 

11.38255 
14.63470 
17.88686 
21.13901 
24-39117 
2764333 
30.89548 
---_ 

K= l/6 
I.12495 
4.58269 
7-83073 

11.04763 
14.25304 
17.45278 
20.64929 
23.84375 
27.03685 
30.22899 

K= l/3 
1.28216 
4.70436 
7.98144 

11.23569 
14.48154 
17.72327 
20.96265 
24.20056 
27.43748 
30.67373 

I( = l/2 
1.38300 
4.76771 
8.05276 

11.32103 
14.58304 
17.84195 
21.09910 
24-35514 
27.61044 
30.86523 

0.46900 41.7 
o-19917 4.35 
o-13904 1.78 
0.11005 l+IO 
0.09254 0.65 
0.08071 0.46 
0.07211 0.35 
0.06555 @27 
~~36 @22 
0.05613 0.19 

0.33428 26.1 
0.14498 3.08 
O-10078 1.26 
0.07943 0.71 
0.0~46 0.46 
0.05763 o-33 
0.05113 0.24 
0.04612 o-19 
@04208 0.15 
0.03873 0.13 

0.24308 17.6 
0.11052 2.32 
0.07763 0.96 
0.06152 0.54 
0.05166 0.35 
004491 @25 
0.03991 0.19 
0.03#3 0.15 
0.03289 0.12 
0.03025 0.10 
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Table l--continued 

n hlH& 

1.63055 1.45640 
4.89166 4.80780 

8 
9 

8.15276 
11.41387 
14.67498 
17.93608 
21.19719 
24.45830 
27.71940 
30.98051 

0 1.63118 
1 4.89354 
2 8.15590 8.13040 0.02550 0.31 
3 11.41826 1 l-40302 0.01524 0.13 
4 14.68062 14.67321 0+0074 1 0.05 
5 17.94298 17.94215 OXIOO83 @005 

21.20534 21.21035 -0*00501 -0.02 
2446770 24.47810 -0*01040 -@04 

8 27.13006 27.74554 -0.01548 - 0.06 
9 30.99242 31.01279 - 0.02037 - 0.07 

AHQ h'HQ - &IQ 
hlHQ - bfQ. ,m 

bQ 

K = 213 

8.09310 
11.36629 
1463486 
17.90112 
21.16606 
24.43017 
27.69372 
30.95689 

0.17415 12.0 
0.08386 1.74 
0.05966 0.74 
0.04758 0.42 
0*04012 0.27 
0.03496 0.20 
0.03113 0.15 
0.02813 0.12 
0.02568 0.09 
O-02362 0.08 

K = 20121 

154688 0.08430 
4.85174 0.04180 

5.45 
0.86 

It is evident from Table 1 that the WKB 
approach is an accurate means for computing 
eigenvalues beyond the third or fourth. The first 
two or three are quite inaccurate ; the inaccuracy 
of the lower eigenvalues in problems of heat 
transfer to fluids in laminar motion in round 
tubes has been pointed out by Beek and Eggink 
[l]. This makes the evaluation of limiting Nusselt 
nun&rs that depend primarily on the lower 
eigenvalues quite inaccurate. 

It is also noted that, for a given value of the 
index n, the agreement between the approximate 
and exact eigenvalues becomes better as K 
increases. This seems reasonable because curva- 
ture has been neglected in the approximate 
equation (22), which should be more murate 
for a higher value of K. 
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R&sum&Des expressions approchees pour les valeurs propres tlevbs pour le transport de chaleur 
il un fluide en mouvement axial Newtonien ou non-Newtonien, laminaire ou turbulent, a travers un 
tuyau annulaire sont obtenues par la methode WKB. Une comparaison de ces valeurs propres pour 
un probleme specifique de transport de chaleur avec un ecoulement Newtonien laminaire est faite 
avec les r&utltats de la bibliographie. Les valeun propres elevees sont en bon accord, mais la valeur 

propre la plus basse est 40 % plus tlevee. 

Zusamme&ssung-Mit der WKB-Methode werden Nlherungsausdriicke filr die hiiheren Eigenwerte 
beim W&rmeiibe.rgang an eine Fliissigkeit von turbulenter oder laminarer Newtonscher oder nicht 
Newtonscher axialer Bewegung durche einen Ringraum erzielt. Flir ein Einzelproblem des War- 
meiiberganges bei laminarer Newtonscher Stromung werden diese Eigenwerte mit Ergebnissen aus der 
literatur verglichen. Die hiiheren Eigenwerte stimmen gut iiberein, aber der unterste Eigenwert liegt 

urn 46 % zu hoch. 

AnnoTami$x-IvIeToxom BKE nonyseav npn6nsrruenu~e BblpaHtennn inn B~ICIJIHX co6~nerr- 
HblX 8kiaW3Hkd ~JlFIIK?peHOCaBKPYIVlOM KOab~eK~KAKOCTH,HaXOAFI~eltCRBTYP6yJIeHTHOM 

HJlEl JIaMHHElpHOtd HblOTOHOBCKOM HJlEl Ht?HbIOTOHOBCKOM OCeCIlMYeTPU~HOM ~BUH(l?HBE. 

Ilpoaexeao cparnienne ~TEIX co6crsenabIx suaqerinti ~nfi sacruoti aa.xasn TeIIJIOO6iNHa npri 
JIaMHHapHOMHbIOTOHOBCKOMTW3HIIACE_IBI?CTHblMH JIHTepaTypHblMK AaHHbIMH.~JlH BbICIUHX 

co6cTseuunx miauennti cornacne unonrie xopomee, ~0 nnamne CO6CTBeHKbE ana4ennn npn- 
6JIH8IITWIbHO Ha 40 IQlOQeHTOB IIpeBOCXOAfiT 8HPK?HMR, IlpklBeAeHHble B JIHTepaTJ'pe. 


